First Principle Modelling of Materials and Processes in Dye-Sensitized Photoanodes for Solar Energy and Solar Fuels

نویسنده

  • Mariachiara Pastore
چکیده

In the context of solar energy exploitation, dye-sensitized solar cells and dye-sensitized photoelectrosynthetic cells offer the promise of low-cost sunlight conversion and storage, respectively. In this perspective we discuss the main successes and limitations of modern computational methodologies, ranging from hybrid and long-range corrected density functionals, GW approaches and multi-reference perturbation theories, in describing the electronic and optical properties of isolated components and complex interfaces relevant to these devices. While computational modelling has had a crucial role in the development of the dye-sensitized solar cells technology, the theoretical characterization of the interface structure and interfacial processes in water splitting devices is still at its infancy, especially concerning the electron and hole transfer phenomena. Quantitative analysis of interfacial charge separation and recombination reactions in multiple metal-oxide/dye/catalyst heterointerfaces, thus, undoubtedly represents the compelling challenge in the field of modern computational material science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods

In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...

متن کامل

Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell

The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...

متن کامل

Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes

Introduction Motivated by continuously growing global energy demands and the depletion of readily accessible fossil fuels; the search for alternative energy sources, particularly renewable solar energy, has become vital. Despite the clear advantages associated with the adoption of solar cells, they need to be cost-effective and priced competitively in comparison to conventional energy resources...

متن کامل

Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computation

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017